
Game AI for a Turn-based Strategy Game with Plan Adaptation and
Ontology-based retrieval ∗

Antonio Sánchez-Ruiz† Stephen Lee-Urban? Héctor Muñoz-Avila?

Belén Dı́az-Agudo† Pedro González-Calero†

†Dep. Ingeniera del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

{antsanch}@fdi.ucm.es, {belend,pedro}@sip.ucm.es

?Dep. of Computer Science and Engineering
Lehigh University, PA, USA
{sml3, hem4}@lehigh.edu

Abstract
In this paper we present a novel approach for developing
adaptive game AI by combining case based planning tech-
niques and ontological knowledge from the game environ-
ment. The proposed architecture combines several compo-
nents: a case-based hierarchical planner (Repair-SHOP), a
bridge to connect and reason with Ontologies formalized
in Description Logics (DLs) based languages (OntoBridge),
a DLs reasoner (Pellet) and a framework to develop Case-
Based Reasoning (CBR) systems (jCOLIBRI ). In our ongoing
work we are applying this approach to a commercial Civiliza-
tion clone turn-based strategy game (CTP2) where game AI
is in charge of planning the strategies for automated players.
Our goal is to demonstrate that ontology-based retrieval will
result in the retrieval of strategies that are easier to adapt than
those plans returned by other classical retrieval mechanisms
traditionally used in case-based planning.

Introduction
Developing game AI, i.e. the algorithms that control Non-
player Characters (NPCS) in a game, is well-known to be a
difficult problem. Three outstanding challenges contribute
to this difficulty. First, game developers have little time al-
located to develop game AI; other aspects of game develop-
ment such as storyline, graphics, and network connections
usually take precedence. Second, the development of en-
vironments, called level design, is typically done indepen-
dently of the development of the game AI. Yet, game AI will
be controlling NPCs running in these environments. Third,
games change over time. As games are tested, the games
are tweaked to improve the gaming experience of the player.
This makes constructing effective game AI a moving target.

In this paper we propose a novel approach for develop-
ing adaptive game AI. At the core we propose the combi-
nation of plan adaptation techniques and ontological infor-
mation relating objects in the game environment. Such on-
tological information is readily available in many of these
games and is an integral part of their design. This is par-
ticularly the case for turn-based strategy (TBS) games. In

∗This research partially supported by the Spanish Committee
of Science & Technology (TIN2006-15140-C03-02), the Defense
Advanced Research Projects Agency (DARPA), and the National
Science Foundation (grant no. 0642882)

these kinds of games, two or more opponents (some possi-
bly automated) take turns controlling their own empire or
civilization. Controlling these civilizations involves issuing
commands to units (e.g., to attack an enemy unit, to defend a
location), allocating resources, and constructing new units.
To win, various aspects of building a civilization must be
taken into account including economy production, assign-
ing resources to improve military and economy, deploying
military forces, and using these forces in combat. In TBS
games like Civilization or Call To Power II hundreds of dif-
ferent kinds of units, buildings, technologies, civilizations,
natural resources, terrain features, and weather conditions
form an integral part of the game. Game AI must be able
to reason with these objects while planning the strategies for
the automated players.

Currently, game AI is notoriously famous for cheating to
provide an adequate challenge level. So for example, if a city
is attacked, the game AI will spawn defenders to meet the
challenge even though these defenders are not constructed
according to the rules of the game. This ends up working ac-
ceptably in these games because the game AI includes ways
to make sure it will not unduly challenge a player. How-
ever, cheating does detract from gameplay when the player
realizes what is happening. Furthermore, as games are in-
creasingly used as training environments (e.g., for military
training or as epistemic games), cheating becomes unaccept-
able as the simulation environment is flawed.

We propose maintaining a library of known strategies
(i.e., plans) in the game. This strategy library includes on-
tological information about the objects used in the strate-
gies and the conditions under which these strategies were
performed. We propose an ontology based retrieval to re-
trieve relevant strategies (e.g., strategies that are applicable
to the current gaming situation) and plan adaptation tech-
niques that use the retrieved strategies to adjust them to the
current situation. Our goal is to demonstrate that ontology-
based retrieval will result in the retrieval of strategies that
are easier to adapt than other classical retrieval mechanisms
traditionally used in case-based planning.

Next, we describe the most relevant related work and the
differences with our approach. The section following that
provides an overview of the game and explains why we have



chosen it. Then we describe the general architecture of our
system and how the different modules are connected. Sub-
sequently, the next two sections provide a detailed descrip-
tion of the main components: the case-based planner and the
advantages of an ontological representation of the domain.
Finally, we summarize our work and propose future work.

Related work
One application of planning in games is the work of (Hoang,
Lee-Urban, & Muñoz-Avila 2005), wherein a team of non-
human players in a first-person shooter game is controlled by
dynamically generated plans from the ordered-task decom-
position planner, JSHOP (Nau et al. 1999). Ordered-task
decomposition planning is a special case of hierarchical task
network (HTN) planning where tasks are totally ordered.
This team of bots was shown to outperform teams com-
posed of the same underlying bots that instead used hard-
coded strategies. The domain encoding input to the HTN
planner, however, was static (pre-encoded); no form of CBR
was used. In our work, we intend to retrieve cases of HTN
methods that are most suited to the current game state.

Other researchers have applied CBR in games. In (Aha,
Molineaux, & Ponsen 2005), cases consist of strategies ap-
plicable to specific situations in the real-time strategy game
Stratagus. Using these strategies, they were able to beat
opponents considered “very hard”, such as those that use a
“knights-rush”. This work differs from our approach in that
no form of HTN planning was used, nor are retrieved plans
adapted.

Another use of CBR in games is the multi-layered archi-
tecture CARL (Sharma et al. 2007). CARL combines CBR
and reinforcement learning to achieve a transfer-learning
goal in a real time strategy game. Unlike our work, their
case retrieval does not use ontological information. Further-
more, case reuse is used to select a goal for the planner to
achieve; no plan adaptation occurs.

In (Sánchez-Pelegrı́n, Gómez-Martı́n, & Dı́az-Agudo
2005) the authors present a preliminary approach that also
uses CBR in another clone of Civilization (C-EVO). The
AI-module concentrates on a simple tactical problem con-
cerning actions: the selection of a military unit behavior.
However, this tactical problem has a big impact on the result
of the game. It uses CBR to assign missions to control units
based on a big case base of previously assigned missions.
Learning and weighting case base features is a challenging
problem in this domain because of the difficulties inferring
the impact of individual military unit behavior in the final
game result.

While all of the above methods employ modern AI tech-
niques in games, to our knowledge, there exists no published
work that combines CBP with HTN planning in computer
games. This is one of the primary contributions of our ef-
forts.

The planner used in our proposed architecture, Repair-
SHOP (Warfield et al. 2007), which is capable of perform-
ing plan adaptation, is strongly based on other work that
takes into account failed traces, such as (Veloso 1994). A
trace is a collection of planning decisions that led to a plan.
A failed trace is a collection of plan decisions that led to a

dead-end in the planning process. An example of a dead-
end in a first-principles, forward state-space planner is ar-
riving at a state in the search space where no operator can
be applied. A similar approach was later implemented for
partial order planners (Muñoz-Avila & Weberskirch 1996).
Plan adaptation of hierarchical plans has been proposed be-
fore ((Kambhampati & Hendler 1992); (Muñoz-Avila et al.
2001)). The RETSINA system (Paolucci et al. 1999) adapts
hierarchical plans in the context of a multi-agent system, but
it does not take into account failed traces. Whereas these
works either use solely the path that led to the solution, or
failure traces for non-hierarchical planners, Repair-SHOP is
distinguished in that it takes into account failure traces for
HTN planning.

Some research advocates separating planning from re-
source allocation (i.e., the information sources). Systems
such as RealPLAN (Srivastava, Kambhampati, & Do 2001)
and ParcPLAN (El-Kholy & Richards 1996) follow this ap-
proach. The separation of planning and resource allocation
allows the systems to decompose the problems into parts for
which a specialized reasoner is available. We will follow a
similar principle of separating a problem into parts and use
specialized reasoners for each part – specifically, by separat-
ing plan generation from execution.

Game description
Call to Power II (CTP2) is a turn-based strategy game (Civ-
ilization clone) that was originally developed by Activision
and made open-source in 2003. This game is a good choice
for our project because gameplay involves many decisions
at varying levels of complexity: where to build cities, bal-
ancing exploration and expansion with defense, when and
where to attack an opponent, which units to produce, which
advances to research, etc. The huge amount of possibilities
and factors involved in each decision make this environment
a great challenge to test techniques like hierarchical plan-
ning, case-based planning, and ontological representation of
knowledge.

An example is the best way to get an intuitive feel for how
CTP2 works. Figure 1 shows the initial state of the game. At
this point, the player has two Settler units, which are non-
military units that can explore the map and build new cities.
A majority of the map, which is a grid of tiles, is unexplored
and therefore not visible. When considering a location to
build a city, one must consider the type of terrain, amount of
food and commerce provided by the map tile, and proximity
of tradable goods (e.g. tobacco, beavers) in the vicinity of
that tile.

After a city has been built, the decision of number and
type of units to produce must be made. In addition to build-
ing more settler units, it is possible to produce military units.
Alternatively, the city can begin the construction of a city
improvement, such as a granary. When built, city improve-
ments give benefits to the host city, such as increased com-
merce or food production, or additional defense against at-
tacks. As the game progresses, another type of improve-
ments, called Wonders, becomes available. Wonders (e.g.,
The Great Wall of China) take many turns to complete and



Figure 1: Call to Power II is a turn-based strategy game similar to Civilization.

provide special scientific, military or economic bonuses to
the player’s empire once built.

During the course of the game, enemy civilizations will
eventually be encountered, and battles ensue. Combat in-
volves each opposing unit simultaneously dealing damage to
each other in turns until one is destroyed or retreats. Bonuses
are given to a unit in a “defensive stance” within a city. For
our purposes, game victory is only available through mili-
tary conquest, which entails destroying all existing enemy
units and cities. However, the complete game provides two
other means of victory, one through diplomacy through the
forming of alliances, and the other through scientific ad-
vancement via building a special wonder.

General Architecture
Figure 2 shows the three main modules of our architecture:
Simulator, AI Engine and Knowledge base. The communi-
cation among these modules is done through well defined
interfaces over a TCP/IP connection, so each module can be
executed on different hosts.

The Simulator, or game engine, is a modified version of
the game CTP2, in which a Remote control API has been
added to the original game. This Remote control API is de-
scribed in (Gundevia 2006; Souto 2007) and allows a player
to be controlled using a external program. The API is in
charge of sending messages to the client about the events
that take place in the game (CityBuilt, ArmyMoved, etc),
and executing the commands that it receives (BuildImprove-
ment, MoveArmyTo, etc). With this API only a subset of the
game functionality is available: city development and im-

provement, unit production, and military control. For our
proposes this subset suffices.

The AI Engine is the main module of our architecture and
it combines several components. Repair-SHOP (Warfield
et al. 2007) is a case-based planner based on SHOP (Nau
et al. 1999), a hierarchical planner, and is responsible for
generating new strategies. Like any other case-based plan-
ner, Repair-SHOP finds new plans by adapting old plans that
were successfully used in the past to solve similar situations.
jCOLIBRI (Recio-Garcı́a et al. 2005) is the component that
finds the most suitable old plan by using ontological knowl-
edge represented in a Description Logic formalism. Actu-
ally, jCOLIBRI is a framework for developing CBR Systems
capable of managing ontological information using the On-
toBridge library (Recio-Garcı́a et al. 2006). Finally, there
is a mediator between jCOLIBRI and the ontologies; the DL
Reasoner Pellet(Sirin et al. 2007), is this mediator, and is re-
sponsible for keeping the consistency of the knowledge base
and inferring new knowledge that was not explicitly asserted
but can be deduced. Once the “best” old plan is retrieved by
jCOLIBRI and adapted by Repair-SHOP, it must be executed
by the Supervisor. The Supervisor communicates with the
game and will both manage plan execution and determine
when to begin a new plan retrieval, adaptation, and storage
cycle. If the current plan has been accomplished, or is no
longer suitable, the supervisor will ask the planner to gener-
ate a new plan. In the coming sections we provide a more
detailed description of each part of the AI Engine.

The Knowledge Base module keeps three different types
of information: general knowledge about the domain, used
to compute similarity between cases and adapt them, infor-



Figure 2: Architecture of our system and main modules

mation about the current state of the game, and a collection
of old plans indexed by their initial states and goals (cases).
The main innovation is that we use ontologies to represent
all this knowledge and a DL-like formalism to reason. The
main advantages of this approach are discussed in a later
section.

As a product of the components of our architecture, the
are two main sources of domain knowledge: the tasks, meth-
ods and operators used by the planner and stored in the for-
malism of Repair-SHOP; and the knowledge about the dif-
ferent types of objects in the world and their relations that
are stored using an ontology. In addition, the current state
must be cloned in both formalisms because Repair-SHOP
and jCOLIBRI use it in different ways: the planner must keep
the current state to decide what methods and operators are
applicable to adapt an old plan; and jCOLIBRI keeps the cur-
rent state in an ontology to retrieve the most similar case
using similarity metrics based on hierarchies and DLs.

Planner
In plan adaptation an existing plan must be modified be-
cause of changes in the world conditions (van der Krogt &
de Weerdt 2005). Repair-SHOP, a planning system built on
top of the HTN planner SHOP, is capable of performing plan
adaptation (Warfield et al. 2007). Among its distinguish-
ing characteristics is the ability to take into account failed
traces, which can result in improvements in running time
performance. The HTN planner SHOP implements a vari-
ant of HTN planning called Ordered Task Decomposition.
In this variant tasks are totally ordered and conditions are
evaluated relative to the current state of the world, which is
updated during planning.

A case used in Repair-SHOP is defined as the tuple
(T,S,GG): a collection of HTN tasks T, a state S, and a graph
structure GG, called the goal graph. The goal graph GG rep-

resents the HTN generated when solving (T,S), augmented
by other relations, and takes the form of a directed depen-
dency graph with a one-to-one mapping between each goal
in the graph and each task in SHOP. This graph represents
relations between goals, operators and decisions (applied
operators). The GG, which is an implementation of the RE-
DUX architecture (Petrie 1991) with HTN planning in mind,
maintains dependencies among SHOP task nodes, allowing
SHOP to monitor changes in a task’s preconditions. This
structure propagates changes in conditions to the appropri-
ate task nodes; thus, SHOP can replan the affected sections
through dependency-directed backtracking.

Upon input of a case (T,S,GG) and a new problem (T’,S’),
Repair-SHOP uses the case’s GG relative to (T’,S’) in order
to generate an HTN for the new problem. The same domain
model is implicit in both the new problem and case. Depen-
dencies are evaluated relative to (T’,S’) resulting in a par-
tial HTN that is completed by using standard HTN planning
techniques.

The advantage of using the GG alongside SHOP is that
GGs preserve information about the state of the plan for each
task and subtask that SHOP attempts to solve. Leaves in
the GG correspond to primitive tasks in the HTN. Internal
nodes in the GG correspond to compound tasks in SHOP,
culminating in the original compound task at the root of the
GG.

Repair-SHOP’s operation is straightforward. When
Repair-SHOP monitors a change in conditions, it propagates
the result to the highest affected goal, and then checks for
an alternate decision. If no alternate decision is available,
the graph is navigated upwards towards the root until the
first alternate decision is found. If an alternate decision is
eventually found, the stored SHOP state from that decision
is restored and the SHOP planning algorithm restarted. If
no plan can be found, Repair-SHOP searches upward in the



GG for a new alternate decision. If finally successful, the
new plan is saved and then spliced into the original plan be-
ginning with the first affected goal node.

There are still areas in which Repair-SHOP could be im-
proved. Specifically, the system can only consider situations
wherein conditions in the case are invalid. Clearly, it would
be desirable to consider situations where new conditions are
added (e.g., additional resources are made available).

Knowledge Base and Similarity
As we have already explained, CTP2 is a very complex game
in which the player must manage several different types
of resources: units, city improvements, technical advances,
wonders, etc. Furthermore, each time a player uses his turn
the game time will advance, so a normal game will cross dif-
ferent ages (stone age, ancient age, modern age, etc). In each
age different features are available. Clearly, the complexity
of this environment is substantial: there exist hundreds of
features that interact in different ways depending upon the
stage of gameplay.

All this information can be intuitively described using tax-
onomies. Actually, the game’s user documentation includes
several tables and graphs in which all resources are classi-
fied. The use of these tables and graphs represent a suitable
way to describe complex worlds and so this kind of docu-
mentation can be found in several strategy games. We chose
to use ontologies, as a generalization of taxonomies, to rep-
resent not only the subclass relations but a more complete
description of the domain. Ontologies are an expressive and
standard mechanism to represent reusable knowledge that
has been successfully used in several areas (Sheth & Ra-
makrishnan 2003; Fensel 2002).

Our ontologies have been built by hand from the game
documentation and our experience as players. CTP2 is a
game developed by a third-party company and therefore the
documentation available is restricted to the source code and
some user manuals. However, it is important to realize that
in a real project the developer team has many design docu-
ments available, and the AI engineers can use them to create
the ontologies. In the same way, the games played by the
tester team are a very useful source of knowledge to extract
strategies (cases) that can be used by the planner, although
this process is not completely automatic and some expert in-
tervention is still needed (Ram, Ontañon, & Mehta 2007).

It is evident that these ontologies keep knowledge, and
our goal is to use this information in the retrieval and adap-
tation phases of our case-based planner to improve the per-
formance and accuracy. This way, the planner is able to
use two main knowledge sources: the cases, which repre-
sent concrete past experiences, and ontologies, that repre-
sent general knowledge about the domain. In this sense, our
approach can be described as a knowledge-intensive case-
based planner (KI-CBP).

In figure 3 a small part of our ontology is presented (the
current ontology uses more than 60 defined concepts and
400 instances to represent the world). Each entity of our
world can be classified using different criteria. For instance,
units are classified by the environment in which they operate
(ground, water, air), the age they become available (ancient,

renaissance, modern, etc) and by their military features. In
the same way, the advances are classified by the age and
the technological area (Construction, Economics, Cultural,
Medicine, etc). We will use this ontology to compute sim-
ilarities between different entities. Intuitively, two entities
will be more similar the closer they are in the hierarchy and
the more parent concepts they share.

Let us remember the whole retrieve process of our case-
based planner. Assume that Repair-SHOP needs to build a
new plan to achieve some goals in the current state of the
world. At this point, Repair-SHOP asks the jCOLIBRI com-
ponent for the most similar case in the case base to achieve
those goals in the current state. All the previous plans are
stored in an ontology indexed by goals and initial states.
Then, using the classification capabilities of DLs, a set of
previous cases is retrieved using only some primary features.
After that, the retrieved cases will be ordered using more ac-
curate numerical similarity functions and the most similar
case is returned to the planner for adaptation. These similar-
ity metrics are discussed in next section.

The process we describe is quite complex compared to the
standard foot-printing similarity metric used in CBP, which
only counts the number of equivalent predicates in the states.
However, we think that by using complex retrieval metrics
we will get better cases that will be easier to adapt, reducing
the adaptation time and improving the quality of the final
plan. We can measure the accuracy of the retrieval as the
inverse of the plan adaptation effort.

DL and Ontology-Based Similarity
Description Logics (Baader et al. 2003) (DLs) are a set for-
mal languages (subsets of First Order Logic) that are typi-
cally used to formalize ontologies and reason with complex
worlds. This formalism has been studied for several years
and its features are well defined. An ontology is compound
of a TBox (terminological information or concepts) and a
ABox (asserted information or instances). The TBox con-
tains the concepts, roles (relations between concepts) and
their definitions, and the ABox contains the instances. For
example, the concept Ancient Advance is defined as the in-
tersection of the concepts Advance and Ancient Item. In the
same way, an Ancient Item is defined as anything with a role
hasAge with the value AG Ancient.

Ancient Advance ≡ Advances uAncient Item
Advances ≡ {AD Agriculture AD Chemistry . . .}
Ancient Item ≡ ∃hasAge.{AG Ancient}
Ages ≡ {AG Ancient AG Renaissance . . .}
. . .

We use the TBox to represent the domain constraints, i.e.
the domain information that will not change, and the ABox
to represent the current state of the world. This way the
concept City will represent the terminological definition of
what is a city in our domain, and its instances will represent
the current cities in an specific state of the game. The idea
of using an ontology to represent the state in planning has
been previously proposed in (Sirin 2006), for the Semantic
Web Services domain. However, in that work they use a



Figure 3: Small part of the ontology used to represent the domain in the game CTP2

different approach for planning that uses the DLs inference
capabilities to reason with the Open world Assumption.

The main features of DLs are that they can automati-
cally check the consistency of the ontology (if there exists
at least one model for the ontology), and they can clas-
sify new concepts and instances. The consistency check-
ing is useful when creating the ontology to check that there
are no “impossible definitions”. The reader must take into
account that we are modeling very complex worlds and
it is very easy to make mistakes. By automatically clas-
sifying new concepts and instances that arise from new
state information, similarities can be more easily computed
(González-Calero, Dı́az-Agudo, & Gómez-Albarrán 1999;
Salotti & Ventos 1998).

The main two approaches to compute the similarity using
ontologies are:

• Classification based retrieval using DL classification ca-
pabilities. A new concept is built with the common prop-
erties that we are looking for, then this concept is classi-
fied and its instances are retrieved. Another variation is to
start with an instance, look for the most specific concepts
of which this individual is an instance, and then retrieve
all the instances of those concepts.

• Computational based retrieval. In this approach numeri-
cal similarity functions are used to assess and order the
instances. The use of structured representations of the
knowledge requires similarity metrics to compare two dif-
ferently structured objects, in particular, objects belong-
ing to different classes. Usually the similarity is deter-
mined recursively in a bottom up fashion (Bergmann &
Stahl 1998), i.e., for each simple attribute, a local simi-
larity measure determines the similarity between the two
attribute values, and for each complex attribute a recursive
call compares the two related sub-objects. Then the simi-
larity values returned are aggregated (e.g., by a weighted
sum) to obtain the global similarity between the initial ob-

jects. Different weights can be used to represent the var-
ied importance of properties in the similarity measure.

In general, the similarity computation between two struc-
tured cases can be divided into two components that are ag-
gregated (Bergmann & Stahl 1998): the computation of a
concept based similarity that depends on the location of the
objects in the ontology (or intra-class similarity) and the
computation of a slot-based similarity (or inter-class simi-
larity) that depends on the fillers of the common attributes
between the compared objects.

In our system we will use both approaches. The classifi-
cation based retrieval will retrieve a set of most similar cases
to our current problem taken into account only the most im-
portant features, and then, numerical similarity functions
will be used to order those retrieved cases using more ac-
curate metrics. All this functionality will be provided by the
framework jCOLIBRI that has already implemented different
similarity metrics for structured knowledge represented in
ontologies (Recio-Garcı́a et al. 2006).

Now we present a very trivial example (see Figure 4) in
which the advantages of our approach in terms of quality
are easy to check. Imagine that in the current state of the
world we have two units: a warrior and a submarine, and
our goal is to destroy an enemy city. In our case base there
are only two cases with the same goal. In case 1 there is
only one unit, a warrior. In case 2, there are two units: a
knight and a destroyer. If the foot-print similarity is used for
retrieval, then case 1 will be selected because there is one
match (the warrior unit) against zero matches with the sec-
ond case. However, case 2 is actuality more similar because
a knight is similar to a warrior (both are from the ancient
age and ground military units) and a submarine is similar
to a destroyer (modern age and water military units). Using
the ontological approach all of these similar qualities will
be taken into account and case 2 will consequentially be se-
lected.



Figure 4: Foot-print vs Ontological Similarity

Current Status and Future Work
In this paper we have presented our ongoing effort to in-
tegrate case-based planning techniques with knowledge in-
tensive case-based reasoning using ontologies. In order to
reduce the size of the search space, most approaches to
planning represent the state of the world using propositional
logic. In complex domains, such as real time strategy games,
the expert may find more natural ways to describe the world
using object-oriented representations with inheritance.

One of the main features of Repair-SHOP is its ability to
accelerate the planning process. It does so by reusing pre-
vious plans that can be efficiently adapted when some con-
ditions required by the plan are not met in the current state.
The ultimate goal of the work presented here is to determine
whether using a rich representation of the domain for re-
trieval purposes may result in gains in speed and accuracy
of the planning process.

Speed-ups may arise from more accurate retrieval that re-
sults in reduced adaptation effort and therefore a reduction
in the time to obtain a plan, or from the reduction of the size
of the case base resulting from a more expressive language
to describe the cases. The accuracy of the case retrieval pro-
cess will need to be measured in terms of the adaptation ef-
fort required along with the performance (i.e., game score)
obtained by the resulting plans.

The current adaptation algorithm does not deal with qual-
ity issues. Such an ability would be highly desirable because
the adapted plan could then be related to the challenge level.
For instance, one could produce high quality plans that are
very challenging to the human opponent, versus low quality
(but still executable) plans that are relatively easy to counter.
However, the current design of our system is to adapt plans
such that their execution is feasible. While this may seam
like a weak approach, the ability for the AI to behave in
a reasonable manner is considered an important feature in
game design (Salen & Zimmerman 2004).

At this point we have successfully integrated in a sin-
gle architecture the game CTP2 with Repair-SHOP and
jCOLIBRI , demonstrating the technological feasibility of the
approach. From this point, we are going to start building a
case base large enough to run the experiments that would

demonstrate the benefits of the approach. Cases may be ob-
tained by recording actual users playing the game and by
using Repair-SHOP to generate plans by running it against
human or artificial opponents.

References
Aha, D. W.; Molineaux, M.; and Ponsen, M. J. V. 2005.
Learning to win: Case-based plan selection in a real-time
strategy game. In Muñoz-Avila, H., and Ricci, F., eds., IC-
CBR, volume 3620 of Lecture Notes in Computer Science,
5–20. Springer.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F. 2003. The description logic
handbook: theory, implementation, and applications. New
York, NY, USA: Cambridge University Press.
Bergmann, R., and Stahl, A. 1998. Similarity measures for
object-oriented case representations. In EWCBR, 25–36.
El-Kholy, A., and Richards, B. 1996. Temporal and re-
source reasoning in planning: The parcPLAN approach. In
Wahlster, W., ed., Proc. of the 12th European Conference
on Artificial Intelligence (ECAI-96), 614–618. Wiley &
Sons.
Fensel, D. 2002. Ontology-based knowledge management.
IEEE Computer 35(11):56–59.
González-Calero, P. A.; Dı́az-Agudo, B.; and Gómez-
Albarrán, M. 1999. Applying DLs for retrieval in case-
based reasoning. In Lambrix, P.; Borgida, A.; Lenzerini,
M.; Möller, R.; and Patel-Schneider, P. F., eds., Descrip-
tion Logics, volume 22 of CEUR Workshop Proceedings.
CEUR-WS.org.
Gundevia, U. 2006. Integrating war game simulations with
ai testbeds: Integrating call to power 2 with tielt. Master’s
thesis, Lehigh University.
Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
ai. In Young, R. M., and Laird, J. E., eds., AIIDE, 63–68.
AAAI Press.
Kambhampati, S., and Hendler, J. A. 1992. A validation-



structure-based theory of plan modification and reuse. Ar-
tificial Intelligence 55(2-3):193–258.
Muñoz-Avila, H., and Weberskirch, F. 1996. Planning for
manufacturing workpieces by storing, indexing and replay-
ing planning decisions. In AIPS, 150–157.
Muñoz-Avila, H.; Aha, D. W.; Nau, D. S.; Weber, R.; Bres-
low, L.; and Yaman, F. 2001. Sin: Integrating case-based
reasoning with task decomposition. In IJCAI, 999–1004.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
Shop: Simple hierarchical ordered planner. In Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), 968–973.
Paolucci, M.; Shehory, O.; Sycara, K. P.; Kalp, D.; and
Pannu, A. 1999. A planning component for RETSINA
agents. In Agent Theories, Architectures, and Languages,
147–161.
Petrie, C. 1991. Planning and Replanning with Reason
Maintenance. Ph.D. Dissertation, University of Texas at
Austin, Computer Science Dept.
Ram, A.; Ontañon, S.; and Mehta, M. 2007. Artificial
inteligence for adaptive computer games. In In Proc. of
the 20th International FLAIRS Conference on Artificial In-
teligence. AAAI Press.
Recio-Garcı́a, J. A.; Sánchez-Ruiz, A. A.; Dı́az-Agudo,
B.; and González-Calero, P. A. 2005. jCOLIBRI 1.0 in
a nutshell. a software tool for designing CBR systems. In
Petridis, M., ed., Proccedings of the 10th UK Workshop on
Case Based Reasoning, 20–28. CMS Press, University of
Greenwich.
Recio-Garcı́a, J. A.; Dı́az-Agudo, B.; González-Calero,
P. A.; and Sánchez-Ruiz, A. A. 2006. Ontology based
CBR with jCOLIBRI. In Ellis, R.; Allen, T.; and Tuson,
A., eds., Applications and Innovations in Intelligent Sys-
tems XIV, 149–162. Springer-Verlag London.
Salen, K., and Zimmerman, E. 2004. Rules of Play: Game
Design Fundamentals. MIT Press.
Salotti, S., and Ventos, V. 1998. Study and Formaliza-
tion of a Case-Based Reasoning system using a Description
Logic. In EWCBR, 286–297.
Sánchez-Pelegrı́n, R.; Gómez-Martı́n, M. A.; and Dı́az-
Agudo, B. 2005. A CBR module for a strategy videogame.
In Aha, D. W., and Wilson, D., eds., 1st Workshop on Com-
puter Gaming and Simulation Environments, at 6th Inter-
national Conference on Case-Based Reasoning (ICCBR),
217–226.
Sharma, M.; Holmes, M.; Santamaria, J.; ; Irani, A.; Isbell,
C.; and Ram, A. 2007. Transfer learning in real-time strat-
egy games using hybrid cbr/rl. In Proc. of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
07).
Sheth, A. P., and Ramakrishnan, C. 2003. Semantic (web)
technology in action: Ontology driven information systems
for search, integration and analysis. IEEE Data Eng. Bull.
26(4):40–48.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,

Y. 2007. Pellet: A practical OWL-DL reasoner. Journal of
Web Semantics 5(2).
Sirin, E. 2006. Combining Description Logic reasoning
with ai planning for composition of web services. Ph.D.
Dissertation, University of Maryland.
Souto, J. 2007. A turn-based strategy game testbed for
artificial intelligence. Master’s thesis, Lehigh University.
Srivastava, B.; Kambhampati, S.; and Do, M. B. 2001.
Planning the project management way: Efficient planning
by effective integration of causal and resource reasoning in
realplan. Artificial Intelligence 131(1-2):73–134.
van der Krogt, R., and de Weerdt, M. 2005. Plan repair
as an extension of planning. In Proceedings of the Inter-
national Conference on Planning and Scheduling (ICAPS-
05), 161–170.
Veloso, M. M. 1994. Planning and Learning by Analogi-
cal Reasoning, volume 886 of Lecture Notes in Computer
Science. Springer.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Munoz-Avila,
H. 2007. Adaptation of hierarchical task network plans. In
Proceedings of the Twentieth International FLAIRS Con-
ference (FLAIRS-07).


